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Two simple distribution-free tests of goodness of fit

by

Z. W. Birnbaum and Victor Kuang-Tao Tang

Summary.

If X has t;he continuous cumulative distribution function F

and X 1 9 X2 ,..., Xn  is a sample of X then each of the two

statistics F n7 F(Xj) and, for n odd, U = median of

CF(Xi), ... F(Xn)] has a probability distribution independent of Fe

Tests of goodness of fit based on these statistics are. proposed,

some numerical tables are presented, and power and consistenoe of

the tests are discussed. ,

I. Introduction.

1.1. Basic concepts.

Let I and A' be two families of cumulative distribution

functions. A real-valued functicn

;3-x 1, x2,.... Yn,# G)

is called a stat.sti,. in Q with reeard to S' wlen for every

I G S and every F £- .' the following rcquirements are fulfilled-

if X19 X2 1-'1, Xn are identically independently distributed (i.i.d.)

random variables with the o.d.f. F then

(i) S(X, X2 9***. Xn' G) is defined except for a set of
probability zero in (X1, X2 ".'. Xn), and

(ii) W ' x 2 C) has a probability distribution,
ivhich. wiL .e il-notad .
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P[53(X 1 X2 ,.., Xn G) ; - P(W; F).

For ex aple, consider X 1" Xeo.., Xn ii.d. with probability

density N(a.) q 2 ), and let be the family of all normal

distributionso Then
n

S(X . .. , Xn , G) E - E(X))/%(X)n' ni=l '-X)/CG)

is a statist ic in j% w.r.t. A'.

If and the statistir S(XI X2,... , X,11 G) has the

property thai: the probability distcibution :[S(X,2,.. X, G) G]

is independent of G for G t , , then the statis ,ic

S(X , X2 ,.... Xn, G) is called diotribution-free wi:t;h r 3i..to

1o2. Statistics of structure (d)>

A stati~tia S(X 1 ' X2 ,,.., Xn, G) is said to h,,ve structure d)

with respect to" if there exists a function q)(u], u2 ,...V u ) such

that, for every G e A ,

S(" 1  011 , .. , In G) - C,(l G(X2)1..,-, G(X n l]

We shall from now on denote b j A 2 tho class (f all continuous

one-dimensiu.al cumulative distribution functions. 'he following

theorem will be repeatedly used..

l2.1. Theor oEi. A statistic of ,tructure id) is d:stribution

free wor.t.

2, The .atis..ic.

2 1. Defintit ons and basi:: p:_Poperis?:3 of t!0 statiics and Ue

If • X n i., ; a azip', of a ro.doii vea,:able X.

If 'i "' ' ° '
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which has the c.dofo F CSA 2 , then U1 . F(Xl),O.., Un = F(Xn)

form a sample of the random variable U with uniform distribution

on (0,1). Since E(U) - and G 2(U) . 1 it follows that the

I statistic defined 
by

n(2.1oi) 7 " - zI~l

n E F(Xi)

has the expectation and variance

(2.1o2) 1( G2 (7,) 1 i

We standardize 7 and obtain the statistic

with expectation and variance

E(U*) 2 n

-n) "(U n )

Since Un  is of structure (d), it is by .o2.1 a distribution

free statistic w.r.t. 2' Its probability distribution can be

calculated exactly for small n by evaluating the convolution of

n random variables with uniform distribution on (0,1). For

example, for n a 2 one has

2s2  for 0 < s <

(2.1.5) P{ < }

1 - 2(1 - s)2 for < s <.
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he nce

l( ru)2 for - 7.<u <0

(2ol6) Pu< U

1- (1 .u for o u <4

According to the central :.imit theorem, Un  tonverges in

distribution to N(O,1) with n - a, and numerical calculations

have shown that this convergence is so fast that a'.ready for n - 8

there is pDractically no difference between

PtUn<u) and 0(u) e 7ds
-CO

The statistic Un offers, therefore, the pravtical advantage

that, if ). has the given distribution F, the probability dist=ibu-
4

tion of J can be computed exactly for n sLiall, say n < 10, and

from then or the normal approximation can be used.

2.2. The IT tests.

2.2.1. The one-sided test.

We consider the hypothesis

H: X has c.d.f. F(x) e S. 2

and the one-sided alternative

A : X has c.d.f. A(x) such that A(x) > F(x)

for all x

and A(V) 4 F(t) for some

4-'
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unx be so determined that

(2o2.1l1) P (Un > un,,, F) a ,

hence also

(2-2.1.2) P {Un < - U. I 1-

We then define as our region of rejection

(2-2.1.3)U <-n,•

In view of (2.2.1.2) this test has size c..

2.2.2 Tabulation of critical values Un,c •

Let X denote a random variable with uniform probability

distribution on (-l, +1), and let

n
7n -ni E1X i

be the mean of a sample of X. A table of the exact values of

PJYJJ < sl for a. proceeding by steps Qf .01, had been previously

computed for n = 2,3,A,5,6, and 10, and was available. Making

use of this table and of the relationships

U 1 J(X + 1)
Un J~ I)
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the equations

Un < -Un,} PU > Un P{Yn >

were solved by quadratic inverse interpolation for

= -. 05, .025, o01, -005. The results are presented in Table I.

The last row, n = (, contains values taken from the normalized

normal distribution.

2.23. Lower bound for the power.-

We assume that F, G clS 2. and that X has the c.d.f. G.

so that F is the hypothesis and G the alternative. We assume

furthermore that

G(x) > F(x)

(2.2.3o1)

G(Q)- F( ) + 6 for a given ?
as indic ted in Figure 1.

i

'. ........ ..-

F~-'I

FI



TABLE I

Values un a such that

n,a <- Una] - PUn, a > Unja =

.05 0,25 ,01 .005

2 1o67499 1.900,41 2.10318 2.20454

3 1.66116 1.93737 2.21700 2.37861

1+ 1.65127 1.93969 2.25180 2.44472

5 1.65047 1.94253 2,26631 2.147462

6 1.6 945 1.94572 2.27647 2.49883

10 1.64764 1.95161 2.29725 2.52692

0o 1.645 1.96 2.327 2.575



IXcr <
I;. (xting i tfb) + E, G(%-) f or < x F

for x'((~) y

we clearly have G(x) > L ,.(r) for all x, and co;icl-ue

P F(x) j s I G(PX < F(- ) - (S)" >

(2.2 3 .2)

for o < a < )

LsC ( (s)] , ) + 6 aG(t) for FQ() s < G(Q

4 ~~for ( s<I

,.e define, for , 6>0 and 01+ 6 < 1,

for 0 < a <

for + 6 < 8 < 6

a3 indicated in Figure 2 and then rewrite (2.23.2) in the form

P~~3 Pj'(X) aIG) A,), where

iP7 t), + 6 Gdf).

//

//

'. ,. 1
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Since the test statistic Un is monotone in the sense of

Chapman [2] and has structure (d), it follows from a theorem in

C2], p. 657, that the power of test (2.2.1.3) of hypothesis F

against alternative G is greater than or equal to its power of

? against alternative L.,,,, and that this latter power is a

sharp lower bound for the power for given = P(t) and ? + 6 - (

Witbout loss of generality we may now replace! F(x)by the

uniform oistribution R(s) on (0,1) and L,6(xlby the distribution

function A,,(s) on (0,1). The power of our test of R against

A ,b will be the lower bound for its power for F against G such

That F(s) < G(s) for all real G, and F(s) - and

G(t) - F(f) + 6 for some j •

While it is difficult to compute the exact power for finite

sample size n of the F-test for hypothesis R against alternative

A,,, the asymptotic power for n - aD can be easily computed in the

following mannar.

The expectation and variance of X under the alternative are

E(X; 6 ) (l - 62)

(2-2.3.4*

a 2 (X; A7  1 .. 62 +1 1 3 1 4

The statistic Un has therefore under the alternetive expectation

and variunce



E(U*; A, 6) - - Ji 62

(2.2.3.5)

r2 (u* ; A, 6) 1- -1216 2 + 662 -4 63 - 364

According to the central limit theorem U is asymptotically
n

normal and in view of (2.2.3.5) we have

(2.2.3.6) li Pf <j8 A' 6 ,' -

11 2yl~l2 62+ 662 _ 463 - 36

Sdt.

For 6 - 0 one has A-,,6 - R, (2.2.3.6) becomes

lim P ( U R - a dt

n~soo n - V 2 T L

and, for u n, determined by (2.2.1.2) one has

n,a t2

Slir PtU n < - un,.; RI" li 1 dtn-*coD n-+oo VS

tht01
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+oo t 2

with f e" . dt - a
S

Za

For 6 > 0 and una determined by (2.2.1.2) one obtains

from (2.2.3.6)

nm P U* < - una; A 6 1

U * + 43- 6 -Un, , + --j 6

= lim P 2 2 2.. - A?n,-Cw l-126 +2 662_463- 364 -\/-1216 + 66- _ 63_ 36

W Jirm i_ F" dt - 1n -oo S t o

w h ere u . + 4 3 1

-~ ~~ 1-1276 + 662-,62 6632 3643~

This expression for the asymptotic power of our test against

A 7,6 shows that the test is consistent against every

one-sided alternative,

The results of this and of the next section are not

new. Equivalent statements have been obtained by Chapman

[2, expressions (46), (47)], who reports that the test

discussed here has been previously proposed by L. E. Moses.



2.2-4o Upper bound for the power.

By an argument similar to that in the preceding section,

one can show that if the test (2.2.l.3) is applied to the

hypothesis F and the alternative G in (2.2o3-l) its

power is not greater than it is when that test is applied

to hypothesis F and the alternative.

(2.2o4-1) M6 (x) - min.{F(x) + 6 , 1

which ascribes the discrete probability 6 to the value

-oo o Without loss of generality one may replace F and

M6  by the uniform distribution R(s) on the unit interval

and the distribution
j0 for s < 0

(2.2.4o2) B6 (s) - ss + 6 for 0 < a <1 - 6

Li for 1 - 6< s

respectively, so that the power of our test for R against

B6  is the upper bound for its power for any F in n 2

against an alternative (2.2.3ol). Again, we derive an

asymptotic expression for the power for R against B6 , by

computing

E(X; B6 ) - 1l- 6)2

(2-2o.43)
2S(1; B6 ) 3(1 - + 36),

hence

E(U*; B6 ) - V 4i6(2 - 6)

(2.2-.44)

r 2(U; B6) (1 - 6)3(l + 36)
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and observing that U is, under alternative B6,

asymptotically normal with expectation and variance

(2.2.4.4). The power of the test (2.2.1.3) for R against

B6  is therefore for large n asymptotically

Cn a 2

f d,

where -hr 4 - 6(2 - 6)

Cn (l-)641 l- 6)(1 + 36Y

2.2.50 The two-sided V-test.

We consider a hypothesis F e/l 2  and an alternative

G n2' and agree to reject F when

(2.2-5-1) lunl > un,E. .-

From (2.2.1.1) and (2.2.1.2) follows that (2.2.5.1) defines

a test of size a.

To study the power of this test we consider the

expectation and the variance of F(x) under the alternative

G
+00

EG(F) -. F(x) dG(x)

-00

+00

( (F)O " !oF(x) dG (x) - E(F(),



make the assumption

0 < U2(F) <c

and note that

EF(F) 12F

By virtue of the central limit theorem the random variable

T - EG (F)

--- (F)

tends in distribution to the normalized normal random

variable.

In view of (2.1.3) and (2.2.5.1) we have

P < 1 - , - < u, ; oI -

~P ~j~i71I7-EQ( - E G~E(F)] I <u a;Ga

ANC1-E,(IF)] u a -E (F) 'f162 -(F]+nc

and this is asymptotically equal to

e do

n
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where

a " iT2 0'(F)

(2.2.5.2)

l\ [l - EG(F)I + z
b n  2

n QCGF)

and Z. is such that

00 s 2

i e d -.

From (2,,2.5.2) one concludes that P f Un < r,.a I 07- 0

with n - co for every alternative G such that
(2.2-5.3) E (F) ,

so that the two-sided test (2.2.5.1) is consistent against

every alternative G e £2 satisfying (2.2.5o3).

3, The median-F statistic.

3.1 Definitions and basic properties of the statistic M2m+lO

Let Xl 1 2 .00, X2m+1 be a sample of size 2m+l

(an odd integer) of a random variable I which has c.d.f.
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F e and Xt < Xt < . < x < .... < XVm the

corresponding ordered sample, so that X I is the

sample-median. Then

U1 - F(Xt), U2  F(X?), m~l, Ur ", ,M+1 F(m )

is an ordered sample of a random variable U which has

uniform distribution on (0, 1), and U%1  the median of

that sample. It is well known that U' has the c.d.f.

(2Bsm+l B(+,Dll)(3.1-1) Pl[un, _s .(1:mI)2 um ( - u) '-u " 5l

0

where B and B 5 are the beta-function and the incomplete

beta-fPinction, that therefore

(3.1.2) E(U 1 2 (Um 1
n+l) To V '1+l) '0(m+l)

and that the normalized random variable

(3.13) M2 +1  2 m+ (u, 1 x+1) 2

converges in distribution to the normalized normal variable0

The statistic M2m+l defined by (3.1.3) offers obvious

advantages in practical use: 1) it is a statistic of

structure (d), hence is distribution-free w.rot i2s
2)i
2if X has c~d.f. F then the probability distribution



of M2ml can be computed exactly for m small ;¢rom

(3olo3) and (3.1,.1) by using available tables of the

incomplet e beta-function; 3) for m large the probability

distribution of *2m+l is approximated by the normalized

normal distribution; the statistic I . is easily
X1  o,'o 2m+l i s ailyn"

computed for gi-ven sample X X 2ri+ and g

since all one has to evaluate (or even only to know) is

the sample median XI and the value F(X' o

3.2. The median-F tests°

3.2ol. The one-.sided test,;

To test the hypothesis H against the aLternative A

described in 2,.2,1., we c.termine Tra a so 5hat.

(3.2.1.1) P ( M2m+l il,- , P 42m+I ?rij

and reject H when

(3.2.1.21 Y,2m+l < r- l"

This test .learly has size o

3J,2, Tabulation of critical values W%

To obtain Eolutions -, of eGuation ! this

equation may be written 5n the form



which~, under the hypot. iis, Lnd in view of 03.1.1) ib

eqivalent with

I t 1
0

~'ci ~ivr~ si. ~e z~ze 26! jd pnficaimce level ri

%Kce. V' u. I..~ 'A 'ir outU j,.ej u-% inve'r..e

-nt.erpc t.~ I "I ti h t: Of Lht- -c.ift e 10ca

' il~~i 4 1~ Valut- p E.w'tA Ji Uf .,u : vie.- c'%lci'ate~d

tvr 4 q. : , ';iLrit ~in 4c~e 4 n'

;O0.V lrq; s~ i It. i n, k' Yi ty i 1v ,



TABLE II

Values a such that

1'r'm~l 6,al P M2 m+i> rm #a 0

0O5 .025 .01 .005
2mw

19 1,56845 1.84257 2o14498 2.33986

29 1.59396 1.88142 2.204.28 2.41629

39' 1.60670 1.90094 2.23437 2.45539

49 1.6:J+35 1.91268 2.25255 2.,7899

59 1.61943 i. ,2054 2.26170 2.4+9486

69 1.623 08 1.92015 2.27341 2.50633

79 1.62579 1.93036 2.27995 2.51480

89 1.62793 1.93363 2.28510 2.52140

99 1,62962 1.93626 2.28906 2.52677

1.61+5 i696 2.327 2.575
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3.2-3o Consistence of the median-F test.

Let the hypothesis F and the alternative G both

be in n2, and let their medians be

(3.2.3.1) G = G, ' ) C}, ( I }

The probability of rejection when test (3.2.1.2) is used is

P~ ~ ~ ~G -i < " m P J 2 V20'-71 I X+I) - "I} < - ",,IG]
- I [oo2, 2 < o[F' - a -

We define

Ym 'GCF( - H

(362.3.2)
Y- G[F ( 1  lira Y.

i n Y

Since, under alternative G, the random variable G(X)

has uniform distribution on (0, 1), the random variable

G(X!+I) is the median of a sample of size 2m + 1 of such

a uniformly distributed random variable and by a well-known

theorem (e.g. [31 p. 369) has asymptotically normal distribu-
tion with expectation and variance 1 . The

4 (2m+tl l
probability of rejection ia therefor, asymptotically
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.82/2
_1 • /2da.

Je d
-00

If '> ,we have (Y' - 2m+ - + oo with

moo, and since Y> is equivalent with 4F > 4G

we conclude that test (3.2.1.2) is consistent for every

alternative G such that "G < LF

3.2.4. Lower bound for the power

Using the assumptions and notations of 2,2.3 and noting

that the statistic M2m+i is monotone and has structure

(d), we conclude as in 2.2.3 that a sharp lower bound for

the one-sided test defined by (3.2.1.2) for given '7 and

6 is obtained by choosing as hypothesis the uniform c.d.f.

R(s) on (0,1) and as alternative the c.d.f. A ,6 (s)

defined in 2.2.3. Again, the exact power in this case for

finite sample size appears to be difficult to compute,but

an asymptotic expression can be obtained as follows.

If the random variable V has the c.d~f. A%6(s},

and V is V11 is an ordered sample of V,
thn h sample° m+in V 2 m+1

then the sample median Vi+ 1 has the cod.f.



A

-22-

2ni+12 211+ 2l1.

(2m+)vI(1- v)2m+1 "i for 0 < v <
i-m+ 1

PfV+, _ vIA, 61 - ( 21+1)( 7+ 6)(.1 r6)2ml-i forVS v < + 6

2m 1

E (2 +r)v1(1 -v) 2m+1-i for + 6 < v < o
iim4i-M+l

Since now (3.1.3) becomes

2m+1 2v"I (Vl, - 1

we obtain for the power of the test (3.2.1.2) the expression

{N,.,z<  J ,A,,} " P  Vt+ <  J Z ; A '

If ? < < q + 6, then this becomes

2m+1

S{ ,,,--1 < " ),,,I A 67 _ E (2 , +) ( + 6):il . 6)2m l -1i
iI"<r+l

and this, for m - co, is asymptotically equal to

00 2d
(3.2.-4.1) . d

4.



-23-

where

m+l (-?) + 6 )1 6)

It is clear that for m - oo the expression (3.2.4.1) tends

to 1 when I + 6 > and to 0 when ? + 6 <

3.2.5. The two-sided median-F test.

The test with the region of rejection defined by

(3,2.5.1) I'12m+11 > Ym,-

clearly has size a , so that the values under headings .025

and .005 in Table II may be used to apply the two-sided test

(3.2.5.1) on the .05 and .01 levels of significan,.e. An

argument analogous to that in section 3.2.3 shows that, for

hypothesis F and alternative G both in r2 this test

is consistent if PT LG
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